MonitorDefinition Class
Monitor definition
Constructor
MonitorDefinition(*, compute: ServerlessSparkCompute, monitoring_target: MonitoringTarget | None = None, monitoring_signals: Dict[str, DataDriftSignal | DataQualitySignal | PredictionDriftSignal | FeatureAttributionDriftSignal | CustomMonitoringSignal | GenerationSafetyQualitySignal | GenerationTokenStatisticsSignal] = None, alert_notification: Literal['azmonitoring'] | AlertNotification | None = None)
Keyword-Only Parameters
Name | Description |
---|---|
compute
|
The Spark resource configuration to be associated with the monitor |
monitoring_target
|
The ARM ID object associated with the model or deployment that is being monitored. Default value: None
|
monitoring_signals
|
Optional[Dict[str, Union[DataDriftSignal , DataQualitySignal, PredictionDriftSignal , FeatureAttributionDriftSignal , CustomMonitoringSignal , GenerationSafetyQualitySignal , GenerationTokenStatisticsSignal , ModelPerformanceSignal]]]
The dictionary of signals to monitor. The key is the name of the signal and the value is the DataSignal object. Accepted values for the DataSignal objects are DataDriftSignal, DataQualitySignal, PredictionDriftSignal, FeatureAttributionDriftSignal, and CustomMonitoringSignal. Default value: None
|
alert_notification
|
The alert configuration for the monitor. Default value: None
|
Examples
Creating Monitor definition.
from azure.ai.ml.entities import (
AlertNotification,
MonitorDefinition,
MonitoringTarget,
SparkResourceConfiguration,
)
monitor_definition = MonitorDefinition(
compute=SparkResourceConfiguration(instance_type="standard_e4s_v3", runtime_version="3.4"),
monitoring_target=MonitoringTarget(
ml_task="Classification",
endpoint_deployment_id="azureml:fraud_detection_endpoint:fraud_detection_deployment",
),
alert_notification=AlertNotification(emails=["[email protected]", "[email protected]"]),
)