Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Disables (ON) or enables (OFF) optimizations that could change flag tests and mode changes.
#pragma fenv_access [ON | OFF]
Remarks
By default, fenv_access is OFF.
For more information on floating-point behavior, see /fp (Specify Floating-Point Behavior).
The kinds of optimizations that are subject to fenv_access are:
Global common subexpression elimination
Code motion
Constant folding
Other floating-point pragmas include:
Example
// pragma_directive_fenv_access_x86.cpp
// compile with: /O2
// processor: x86
#include <stdio.h>
#include <float.h>
#include <errno.h>
#pragma fenv_access (on)
int main() {
double z, b = 0.1, t = 0.1;
unsigned int currentControl;
errno_t err;
err = _controlfp_s(¤tControl, _PC_24, _MCW_PC);
if (err != 0) {
printf_s("The function _controlfp_s failed!\n");
return -1;
}
z = b * t;
printf_s ("out=%.15e\n",z);
}
out=9.999999776482582e-003
The following sample is for compiler producing output files for Itanium processors. /fp:precise keeps the intermediate results in extended precision where values greater than FLT_MAX (3.402823466e+38F) can be calculated and as a result of that sum will have 1.0 result, as it should if manually calculated. /fp:strict keeps intermediate results in their source precision (float) so the first addition produces infinity, which is kept throughout the expression.
// pragma_directive_fenv_access_IPF.cpp
// compile with: /O2 /fp:precise
// processor: IPF
// compiling with /fp:precise prints 1.0F
// compile with /fp:strict to print infinity
#include <stdio.h>
float arr[5] = {3.402823465e+38F,
3.402823462e+38F,
3.402823464e+38F,
3.402823463e+38F,
1.0F};
int main() {
float sum = 0;
sum = arr[0] + arr[1] - arr[2] - arr[3] + arr[4];
printf_s("%f\n", sum);
}
1.000000
When commenting out #pragma fenv_access (on) from the previous sample, note that the output is different because the compiler does compile-time evaluation, which does not use the control mode.
// pragma_directive_fenv_access_2.cpp
// compile with: /O2
#include <stdio.h>
#include <float.h>
int main() {
double z, b = 0.1, t = 0.1;
unsigned int currentControl;
errno_t err;
err = _controlfp_s(¤tControl, _PC_24, _MCW_PC);
if (err != 0) {
printf_s("The function _controlfp_s failed!\n");
return -1;
}
z = b * t;
printf_s ("out=%.15e\n",z);
}
out=1.000000000000000e-002