Hi Isuan Agarwal,
Integrating a search functionality with Azure OpenAI models to mimic how ChatGPT Browsing works involves building a Retrieval-Augmented Generation (RAG) pipeline. This process allows your AI to fetch fresh information from the web or internal data and generate informed responses. Here’s a step-by-step implementation guide tailored to Azure:
Step-by-Step Implementation:
Step1: Set Up Azure OpenAI
· Create an Azure OpenAI resource from Azure Portal.
· Deploy a model like gpt-4, gpt-35-turbo, etc.
· Get endpoint and API key for calling the model.
Step2: Set Up the Search Functionality
Option A: Web Search (Live Internet Data)
· Use Bing Search API (via Azure Cognitive Services).
o Get your subscription key and endpoint.
Option B: Internal Document Search
· Use Azure AI Search or OpenSearch:
o Index your own documents (PDFs, Word, text).
o Use vector search and semantic search to find relevant content.
Step3: Create a RAG (Retrieval-Augmented Generation) Pipeline
User Query → Search Engine (Bing or Azure Search) → Fetch Results (top 3) → Combine with Prompt → Send to Azure OpenAI → Return Response
Step4: Code the Flow (Example with Bing + Azure OpenAI in Python)
· Search with Bing API
import requests
def bing_search(query, subscription_key, endpoint):
headers = {"Ocp-Apim-Subscription-Key": subscription_key}
params = {"q": query, "textDecorations": True, "textFormat": "HTML", "count": 3}
response = requests.get(endpoint, headers=headers, params=params)
return [res['snippet'] for res in response.json()['webPages']['value']]
· Combine with Prompt and Call OpenAI
import openai
def generate_answer(prompt, model, openai_endpoint, api_key):
openai.api_base = openai_endpoint
openai.api_key = api_key
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "system", "content": "You're a helpful assistant."},
{"role": "user", "content": prompt}]
)
return response['choices'][0]['message']['content']
· Full Pipeline
def ask_question_with_search(query):
search_results = bing_search(query, bing_key, bing_endpoint)
context = "\n".join(search_results)
prompt = f"Answer the following based on the web results:\n\n{context}\n\nQuestion: {query}"
return generate_answer(prompt, model, openai_endpoint, openai_key)
Step5: Host the Application
· Use FastAPI or Flask for API endpoints.
· Optionally deploy on Azure App Service or Azure Container Apps.
Hope this helps. Do let us know if you any further queries.
If this answers your query, do click Accept Answer
and Yes
for was this answer helpful. And, if you have any further query do let us know.
Thank you!